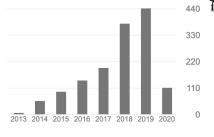


Kevin N. Wood

Assistant Professor


Profile

Dr. Wood specializes in electrochemical energy storage devices (including current/next generation batteries and low temperature fuel cells) as well as interfacial design, electrochemistry, corrosion and additive manufacturing. For more information please visit the Interfacial Design Lab webpage.

Publications

Cited by

All	Since 2015
1426	1359
14	13
17	14
	1426 14

📢 Get in Touch

+ 1 (619) 594-2319

knwood@sdsu.edu

interfacedesignlab.sdsu.com

R^e Researchgate.net/profile/Kevin_Wood5

https://twitter.com/InterfaceSDSU

Professional Experience

San Diego State University / Assistant Professor August 2018 / Present

Prinicple investigator of the Interfacial Design Labroatory. Laboratory consists of 1 post-doctoral researcher, 6 graduate students, and 10 undergraduate students. Teaching areas include, materials engineering, thermodynamics, and battery science

National Renewable Energy Laboratory / Researcher January 2017 / July 2018

Part of National Laboratory consortium on Si anode battery development and developed novel operando XPS/SIMS technique for Li and solid electrolyte battery materials research. Also held adjunct appointment at the Colorado School of Mines

University of Michigan / Post-Doctoral Researcher October 2014 / December 2016

Worked as a member of the Joint Center for Energy Storage Research (JCESR) and as part of an Advanced Research Projects Agency (ARPA-E) solid electrolyte battery project. Advisors Neil Dasgupta and Jeff Sakamoto.

Education

Ph.D. Materials Science / Colorado School of Mines

Dissertation: Improving the durability of methanol oxidation reaction electro-catalysts through the modification of carbon architectures

M.E. Metalurgical Engineering / Colorado School of Mines 2012

Dissertation: Effect of halide-modified model supports on precious metal catalyst stability

B.S. Physics / Colorado School of Mines

2010

Undergraduate Research on superhydrophobicity, microfluidics, photosensitive smart surfaces, and stressed liquid crystal displays

🛓 Focus Areas

- Corrosion
- Batteries
- Interfacial Engineering
- Fuel cells
- Electrochemistry
- Materials

Capabilities

•	Electrochemical	•	XRD	•	Optical Micros-
	Characterization		FTIR		copy
	(8 potentiostat	•	FIIK		Gas Chromatog-
	channels)	•	Raman	•	0
	TEM		Glovebox (11		raphy
•	TEM	•		•	Custom cell for
•	SEM		gloves)		multi-technique
	XPS	•	24 cell cycling	5	operando char-
•	AP3		channels		acterization

\$ Grant Funding

	Industry Funding / Belenos Clean Energy Holdings\$230,000 2020 -awaiting funds Title: Fundamental understanding and improvement of lithium through a metallurigical approach
•	DOE SEIsta / National Renewable Energy Laboratory\$30,000 2020 -awaiting funds Title: Towards and Imporved understanding of lithiation in Silicon and SiO ₂
•	CACFU / California State University\$180,000 2019 Title: XPS Proposal to Support Research, Creative Activities and Core Facility Upgrades
•	STEM-NET / California State University\$25,000 2019 Title: Preventing Ion 'Bunching' in Metal Anode Batteries Through Informed Separator Design
•	University Grants Program / San Diego State University\$10,000 2018 Title: Cold Spray Development for Additive Manufacturing

Select Publications

- 1. Wood, K. N.; Teeter, G. XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction. *ACS Appl. Energy Mater.* 2018, 1 (9), 4493–4504. <u>https://doi.org/10.1021/acsaem.8b00406</u>
- Wood, K. N.; Steirer, K. X.; Hafner, S. E.; Ban, C.; Santhanagopalan, S.; Lee, S.-H.; Teeter, G. Operando X-Ray Photoelectron Spectroscopy of Solid Electrolyte Interphase Formation and Evolution in Li2S-P2S5 Solid-State Electrolytes. *Nat. Commun.* 2018, 9 (1), 2490. <u>https://doi.org/10.1038/s41467-018-04762-z</u>
- Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead Lithium: Mass Transport Effects on Voltage, Capacity, and Failure of Lithium Metal Anodes. *J. Mater. Chem.* A 2017, 5 (23), 11671–11681. <u>https://doi.org/10.1039/C7TA00371D</u>
- Wood, K. N.; Noked, M.; Dasgupta, N. P. Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior. ACS Energy Lett. 2017, 2 (3), 664–672. <u>https://doi.org/10.1021/acsenergylett.6b00650</u>
- Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.-H.; Zhang, J.-G.; Thornton, K.; Dasgupta, N. P. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy. ACS Cent. Sci. 2016, 2 (11), 790–801. <u>https://doi.org/10.1021/acscentsci.6b00260</u>
- Kazyak, E.; Wood, K. N.; Dasgupta, N. P. Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments. *Chem. Mater.* 2015, 27 (18), 6457– 6462. <u>https://doi.org/10.1021/acs.chemmater.5b02789</u>
- Wood, K. N.; O'Hayre, R.; Pylypenko, S. Recent Progress on Nitrogen/Carbon Structures Designed for Use in Energy and Sustainability Applications. *Energy Environ. Sci.* 2014, 7 (4), 1212. <u>https://doi.org/10.1039/c3ee44078h</u>

Select Patents

1. Wood, K.; Dasgupta, N.; Kazyak, E.; Chen, K.-H. Method of Improved Performance in Metal Electrodes For Batteries. <u>US20190131622A1</u>, 2019.